DEPARTMENT OF COMPUTER SCIENCE Dyal Singh College, University of Delhi

(ACADEMIC SESSION, 2023-24)
Course: B.Sc(H) Computer Science (Part 2/3 Semester)
Paper Code and Name: Data Structures
(TH/PR)

FACULTY

Name of Teacher: Ms. SAPNA GROVER
Contact:
Email: sapnagrover@dsc.du.ac.in

ASSESSMENT DETAILS

Total Marks for the course is 120, comprising following components

- CA - 0
- IA-30

TEACHING PLAN

Week	Topics Covered/ Assignments/ Test/Presentations
$1-2$	Growth of Functions, Recurrence Relations
$3-4$	Arrays, Linked Lists
$5-6$	Stacks, Queues, Deques
$7-8$	Trees, Binary trees, Class Test
$9-10$	Binary Search Trees
$11-12$	Balanced Search Trees
$13-14$	Balanced Search Trees

DEPARTMENT OF COMPUTER SCIENCE Dyal Singh College, University of Delhi

(ACADEMIC SESSION, 2023-24)
Course: B.Sc(H) Computer Science (Part 1/1 Semester) Paper Code and Name: Mathematics for Computing (2342011103)
(TH/PR)

FACULTY

Name of Teacher: Ms. SAPNA GROVER Contact:

Email: sapnagrover@dsc.du.ac.in

ASSESSMENT DETAILS

Total Marks for the course is $\mathbf{1 2 0}$, comprising following components

- CA-0
- IA-30

TEACHING PLAN

Week	Topics Covered/ Assignments/ Test/Presentations
$1-2$	Introduction to Matrix Algebra: Echelon form of a Matrix, Rank of a Matrix, Determinant and Inverse of a matrix
$3-4$	Solution of System of Homogeneous \& Non-HomogeneousEquations: Gauss elimination and Gauss Jordan Method.
$5-6$	Vector Space, Sub- spaces, Linear Combinations, Linear Span, Linear Independence/ Dependence, Basis \& Dimension, Linear transformation on finite dimensional vector spaces
$7-8$	Inner Product Space, Schwarz Inequality, Orthonormal Basis, Gram-Schmidt Orthogonalization Process, Convex Sets Assignment
$9-10$	EigenValue and EigenVector:Characteristic Polynomial, Cayley Hamilton Theorem (Only in numericals), Eigen Value And eigen vector of a matrix, eigenspaces, Diagonalization
$11-12$	Positive Definite Matrices, Applications to Markov Matrices Class Test
$13-14$	Vector Calculus: Vector Algebra, Laws of Vector Algebra, Dot Product, Cross Product, Vector and Scalar Fields, Ordinary Derivative of Vectors, Space Curves, Partial Derivatives, Del Operator
$15-16$	Gradient ofa Scalar Field, Directional Derivative, Gradient of Matrices, Divergence of a Vector Field, Laplacian Operator, Curlof a Vector Field.

